Discriminative Distance Measures for Object Detection
نویسندگان
چکیده
The reliable detection of an object of interest in an input image with arbitrary background clutter and occlusion has to a large extent remained an elusive goal in computer vision. Traditional model-based approaches are inappropriate for a multi-class object detection task primarily due to difficulties in modeling arbitrary object classes. Instead, we develop a detection framework whose core component is a nearest neighbor search over object parts. The performance of the overall system is critically dependent on the distance measure used in the nearest neighbor search. A distance measure that minimizes the mis-classification risk for the 1-nearest neighbor search can be shown to be the probability that a pair of input measurements belong to different classes. This pair-wise probability is not in general a metric distance measure. Furthermore, it can out-perform any metric distance, approaching even the Bayes optimal performance. In practice, we seek a model for the optimal distance measure that combines the discriminative powers of more elementary distance measures associated with a collection of simple feature spaces that are easy and efficient to implement; in our work, we use histograms of various feature types like color, texture and local shape properties. We use a linear logistic model combining such elementary distance measures that is supported by observations of actual data for a representative discrimination task. For performing efficient nearest neighbor search over large training sets, the linear model was extended to discretized distance measures that combines distance measures associated with discriminators organized in a treelike structure. The discrete model was combined with the continuous model to yield a hierarchical distance model that is both fast and accurate. Finally, the nearest neighbor search over object parts was integrated into a whole object detection system and evaluated against both an indoor detection task as well as a face recognition task yielding promising results.
منابع مشابه
The Optimal Distance Measure for Object Detection
We develop a multi-class object detection framework whose core component is a nearest neighbor search over object part classes. The performance of the overall system is critically dependent on the distance measure used in the nearest neighbor search. A distance measure that minimizes the mis-classification risk for the 1-nearest neighbor search can be shown to be the probability that a pair of ...
متن کاملObject Detection Using Hausdorff Distance and Multiclass Discriminative Field
In this paper, we present a novel object detection scheme using only local contour fragments. A sample fragment extraction method decomposes a whole contour into several parts. Then, the candidate locations of corresponding fragments in test images are detected by a modified Hausdorff distance with punishment on clutter edge regions. The most probable locations are selected by Multiclass Discri...
متن کاملA NEURO-FUZZY GRAPHIC OBJECT CLASSIFIER WITH MODIFIED DISTANCE MEASURE ESTIMATOR
The paper analyses issues leading to errors in graphic object classifiers. Thedistance measures suggested in literature and used as a basis in traditional, fuzzy, andNeuro-Fuzzy classifiers are found to be not suitable for classification of non-stylized orfuzzy objects in which the features of classes are much more difficult to recognize becauseof significant uncertainties in their location and...
متن کاملLocated Hidden Random Fields: Learning Discriminative Parts for Object Detection
This paper introduces the Located Hidden Random Field (LHRF), a conditional model for simultaneous part-based detection and segmentation of objects of a given class. Given a training set of images with segmentation masks for the object of interest, the LHRF automatically learns a set of parts that are both discriminative in terms of appearance and informative about the location of the object. B...
متن کاملLow Cost UAV-based Remote Sensing for Autonomous Wildlife Monitoring
In recent years, developments in unmanned aerial vehicles, lightweight on-board computers, and low-cost thermal imaging sensors offer a new opportunity for wildlife monitoring. In contrast with traditional methods now surveying endangered species to obtain population and location has become more cost-effective and least time-consuming. In this paper, a low-cost UAV-based remote sensing platform...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002